Completeness for μ-calculi: a coalgebraic approach
نویسندگان
چکیده
We set up a generic framework for proving completeness results for variants of the modal mucalculus, using tools from coalgebraic modal logic. We illustrate the method by proving two new completeness results: for the graded mu-calculus (which is equivalent to monadic second-order logic on the class of unranked tree models), and for the monotone modal mu-calculus. Besides these main applications, our result covers the Kozen-Walukiewicz completeness theorem for the standard modal mu-calculus, as well as the linear-time mu-calculus and modal fixpoint logics on ranked trees. Completeness of the linear-time mu-calculus is known, but the proof we obtain here is different and places the result under a common roof with Walukiewicz’ result. Our approach combines insights from the theory of automata operating on potentially infinite objects, with methods from the categorical framework of coalgebra as a general theory of statebased evolving systems. At the interface of these theories lies the notion of a coalgebraic modal one-step language. One of our main contributions here is the introduction of the novel concept of a disjunctive basis for a modal one-step language. Generalizing earlier work, our main general result states that in case a coalgebraic modal logic admits such a disjunctive basis, then soundness and completeness at the one-step level transfers to the level of the full coalgebraic modal mu-calculus. Mathematics Subject Classification (MSC2010): 03B45; 03B70; 68Q60; 91A43.
منابع مشابه
An Expressive Completeness Theorem for Coalgebraic Modal Μ-calculi
Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given...
متن کاملDisjunctive bases: normal forms and model theory for modal logics
We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it m...
متن کاملEXPTIME Tableaux for the Coalgebraic µ-Calculus
The coalgebraic approach to modal logic provides a uniform framework that captures the semantics of a large class of structurally different modal logics, including e.g. graded and probabilistic modal logics and coalition logic. In this paper, we introduce the coalgebraic μ-calculus, an extension of the general (coalgebraic) framework with fixpoint operators. Our main results are completeness of...
متن کاملEXPTIME Tableaux for the Coalgebraic mu-Calculus
The coalgebraic approach to modal logic provides a uniform framework that captures the semantics of a large class of structurally different modal logics, including e.g. graded and probabilistic modal logics and coalition logic. In this paper, we introduce the coalgebraic μ-calculus, an extension of the general (coalgebraic) framework with fixpoint operators. Our main results are completeness of...
متن کاملDisjunctive Bases: Normal Forms for Modal Logics
We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it m...
متن کامل